Implementation of a High Throughput Soft MIMO Detector on GPU

نویسندگان

  • Michael Wu
  • Yang Sun
  • Siddharth Gupta
  • Joseph R. Cavallaro
چکیده

Multiple-input multiple-output (MIMO) significantly increases the throughput of a communication system by employing multiple antennas at the transmitter and the receiver. To extract maximum performance from a MIMO system, a computationally intensive search based detector is needed. To meet the challenge of MIMO detection, typical suboptimal MIMO detectors are ASIC or FPGA designs. We aim to show that a MIMO detector on Graphic processor unit (GPU), a low-cost parallel programmable co-processor, can achieve high throughput and can serve as an alternative to ASIC/FPGA designs. However, careful architecture aware software design is needed to leverage the performance offered by GPU. We propose a novel soft MIMO detection algorithm, multi-pass trellis traversal (MTT), and show that we can achieve ASIC/FPGAlike performance and handle different configurations in software on GPU. The proposed design can be used to accelerate wireless physical layer simulations and to offload MIMO detection processing in wireless testbed platforms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GPU Acceleration of a Configurable N-Way MIMO Detector for Wireless Systems

Multiple-input multiple-output (MIMO) wireless is an enabling technology for high spectral efficiency and has been adopted in many modern wireless communication standards, such as 3GPP-LTE and IEEE 802.11n. However, (optimal) maximum aposteriori (MAP) detection suffers from excessively high computational complexity, which prevents its deployment in practical systems. Hence, many algorithms have...

متن کامل

Systolic like soft-detection architecture for 4×4 64-QAM MIMO system

MIMO systems (with multiple transmit and receive antennas) are becoming increasingly popular, and many next-generation systems such as WiMAX, 3-GPP LTE and IEEE802.11n wireless LANs rely on the increased throughput of MIMO systems with up to four antennas at receiver and transmitter. High throughput implementation of the detection unit for MIMO systems is a significant challenge especially for ...

متن کامل

VLSI Implementation of a Fixed-Complexity Soft-Output MIMO Detector for High-Speed Wireless

This paper presents a low-complexity MIMO symbol detector with close-Maximum a posteriori performance for the emerging multiantenna enhanced high-speed wireless communications. The VLSI implementation is based on a novel MIMO detection algorithm called Modified Fixed-Complexity Soft-Output (MFCSO) detection, which achieves a good trade-off between performance and implementation cost compared to...

متن کامل

Implementation of low-complexity MIMO detector and efficient soft-output demapper for MIMO-OFDM-based wireless LAN systems

In this paper, we describe a simplified soft-output demapper designed to support coded multiple-input multiple-output orthogonal frequency-division multiplexing-based system utilizing only 3-bit soft information. The IEEE 802.11n standard requires relatively high punctured convolutional code rate of R = 5/6 for spectrally efficient high-throughput data rate settings. In order to extract soft-bi...

متن کامل

Efficient VLSI implementation of soft-input soft-output fixed-complexity sphere decoder

Fixed-complexity sphere decoder (FSD) is one of the most promising techniques for the implementation of multiple-input multiple-output (MIMO) detection, with relevant advantages in terms of constant throughput and high flexibility of parallel architecture. The reported works on FSD are mainly based on software level simulations and a few details have been provided on hardware implementation. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal Processing Systems

دوره 64  شماره 

صفحات  -

تاریخ انتشار 2011